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Artificial neural network predictions on erosive wear of polymers
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Abstract

In the present paper, an artificial neural network (ANN) approach was applied to the erosive wear data of three polymers, i.e. polyethylene
(PE), polyurethane (PUR), and an epoxy modified by hygrothermally decomposed polyurethane (EP-PUR). Three independent datasets
of erosive wear measurements and characteristic properties of these polymers were used to train and test the neural networks. For the
first two material examples, the impact angle of solid particle erosion and some characteristic properties were selected as ANN input
variables. Whereas the third one, material compositions, i.e. epoxy and HD-PUR weight contents, were also involved as additional ANN
input variables. In all these cases, the output parameter was the erosive wear rate. Acceptable ANN predictive qualities were reached,
demonstrating that ca. 35–80% of the randomly selected test dataset had a coefficient of determinationB ≥ 0.9 for these three cases,
respectively. Ranking of the importance of characteristic properties to erosive wear rate could offer some information about which property
has a stronger relationship to wear in each polymer case. Even though the ANN approach is only a phenomenological method, a well-trained
ANN is believed to be also of help for a mechanistic understanding of the problem considered.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The correlations between wear resistance and character-
istic properties of polymers have been discussed in terms of
various semi-empirical equations by some pioneers. These
include, e.g. the Ratner–Lancaster equation[1,2], i.e. the
relationship of the single pass abrasion rate with the recip-
rocal of the product of ultimate tensile stress and strain, or
an equation used by Friedrich[3] to correlate the erosive
wear rate of polymers with the quotient of their hardness to
fracture energy. Although these equations are quite helpful
to estimate the wear behavior of polymers in some special
cases, wear normally is very complicated, and it therefore
depends on many more mechanical and other parameters.
This means that simple functions cannot always cover all
the prevailing mechanisms under wear.

For predictive purposes, an artificial neural network
(ANN) approach has, therefore, been introduced recently
into the field of wear of polymers and composites by Velten
et al. [4] and Zhang et al.[5]. An ANN is a computa-
tional system that simulates the microstructure (neurons)
of biological nervous system. The most basic compo-
nents of ANN are modeled after the structure of the brain.
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Inspired by these biological neurons, ANN is composed of
simple elements operating in parallel. ANN is the simple
clustering of the primitive artificial neurons. This clustering
occurs by creating layers, which are then connected to one
another. How these layers connect may also vary. Basically,
all ANN have a similar structure of topology. Some of the
neurons interface the real world to receive its input, and
other neurons provide the real world with the network’s
output. All the rest of the neurons are hidden from view.
As in nature, the network function is determined largely by
the interconnections between neurons, which are not simple
connections, but some non-linear functions. Each input to a
neuron has a weight factor of the function that determines
the strength of the interconnection and thus the contribution
of that interconnection to the following neurons. ANN can
be trained to perform a particular function by adjusting the
values of these weight factors between the neurons, either
from the information of outside the network or by the neu-
rons themselves in response to the input. This is the key to
the ability of ANN to achieve learning and memory.

The multi-layered neural network is the most widely ap-
plied neural network, which has been utilized in the most
of the research works for materials science, reviewed by
Zhang and Friedrich[6]. Backpropagation algorithm can be
used to train these multi-layer feed-forward networks with
differentiable transfer functions to perform function approx-
imation, pattern association, and pattern classification. The
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term backpropagation refers to the process by which deriva-
tives of network error, with respect to network weights
and biases, can be computed. The training of an ANN by
backpropagation involves three stages: (a) the feed-forward
of the input training pattern, (b) the calculation and back-
propagation of the associated error, and (c) the adjustment
of the weights. This process can be used with a number of
different optimization strategies.

In the present paper, three polymer examples were
considered, i.e. polyethylene (PE), polyurethane (PUR),
and an epoxy modified by hygrothermally decomposed
polyurethane (EP-PUR). Independent datasets of erosive
wear measurements and other characteristic properties of
these polymers were used to train and test the designed
neural networks. Acceptable ANN predictive qualities were
reached, demonstrating that ca. 35–80% of the randomly
selected test dataset had a coefficient of determination
B ≥ 0.9 for these three cases, respectively. Ranking of the
importance of these characteristic properties to erosive wear
rate could offer us some information about which property
has a stronger relationship to wear in each case. Predictive
results of erosive wear rate of EP-PUR as a function of
polymer compositions and erosive test conditions were also
presented, which is believed to be of help for a mechanistic
understanding of the problem considered.

2. Evaluation

For materials research, a certain amount of experimental
results is always required for developing a well-performing
artificial neural network. In order to obtain an optimized
neural network construction, a total dataset of measurement
results:

D = {(P(i), O(i))|i = 1, . . . , N} (1)

is normally divided into a training dataset,

Dtraining = {(P(i), O(i))|i = 1, . . . , M} (2)

and a test dataset,

Dtest = {(P(i), O(i))|i = M + 1, . . . , N} (3)

in which P(i) is theith input variable selected, whereasO(i)

is the ith output parameter for prediction. The total dataset
with a number ofN has been divided into a training dataset
with M data, and, therefore, a test dataset withN− M data.
The training dataset is used to adjust the weights of all the
connecting nodes until the desired error level is reached.
Thereafter, the network performance is evaluated by using
the test dataset.

The quality of the prediction can be normally character-
ized by the root mean square error (RMSE) of the predicted
values to the real measured data of the test dataset. The
smaller the RMSE of the test dataset is, the higher is the
predictive quality.

As an improvement, the coefficient of determinationB
(also calledR2 coefficient in some literatures) has been in-
troduced to the ANN quality evaluation, which is defined by

B = 1 −
∑M

i=1(O(p(i)) − O(i))2

∑M
i=1(O

(i) − O)2
(4)

where O(p(i)) is the ith predicted property characteristic,
O(i) is theith measured value,O is the mean value ofO(i),
andM is the number of test data. The coefficientB describes
the fit of the ANNs output variable approximation curve
with the actual test data output variable curve. HigherB co-
efficients indicate an ANN with better output approximation
capabilities.

To avoid any artificial influence in selecting the test data,
a random technique could be applied in the selection, and
the entire process will be repeated independently for several
times (e.g. 50 times). Afterwards the distribution ofB values
is recorded and the percentage ofB ≥ 0.9 is calculated,
since this value is identified as a high predictive quality, i.e.
less than 15% of the RMSE of the predicted values. It is
clear that higher the percentage ofB ≥ 0.9 is, the better is
the quality.

3. Dataset

3.1. Polyethylene (PE)[7]

The dataset of polyethylene contains 55 groups of data,
i.e. 11 kinds of PE with various degrees of crystallinity, and
impacted with solid erosive particles at five angles, i.e. 15,
30, 45, 60, and 90◦. A type of corundum has been applied
as the erodent (listed as case 1 inTable 1), and the erosive
velocity was constant of 70 m/s and duration was 300 s. Five
characteristic properties, i.e. Young’s modulus, yield stress,
yield strain and fracture energy, as well as the crystallinity
(as a structural parameter) were selected as ANN input vari-
ables. The erosive rate was the ANN output for prediction.

3.2. Polyurethane (PUR)[7]

PUR database has 54 data with 18 kinds of thermosetting
(crosslinked) or thermoplastic PUR, as well as three erosive
impact angles, i.e. 15, 30, and 90◦. The erodent was still the
corundum, and the erosive velocity and duration were as the
same as PE. Tensile stresses atε = 100 or 300%, failure

Table 1
Summary of erodents and their erosive test conditions for EP-PUR[7]

S. no. Erodent Size (�m) Mass flow
rate (kg/s)

Velocity
(m/s)

1 Corundum 60–120 0.015 70
2 Corundum 120–240 0.032 102
3 Steel grit 120–300 0.039 60
4 Glass beads 150–300 0.036 75
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stress and strain, glass transition temperature (Tg), damping
at Tg, hardness, density, as well as the thermal expansion
coefficient were additional input variables for predicting the
erosion rate, which is the ANN output parameter.

3.3. Epoxy modified by hygrothermally decomposed
polyurethane (EP-PUR)[7,8]

Mechanical performances of epoxy resins can be varied
in a very broad range by modifying with tough PUR. With
various PUR amounts of EP-PUR system polymers, differ-
ent properties can be reached between those of crosslinked
thermosets and rubbers. In the present case, the weight
content of epoxy (or PUR) as well as some mechanical and
thermal parameters was considered as ANN input variables.
The weight amount of PUR varies from 0, 20, 40, 60, to
80%. The characteristic properties considered include den-
sity, mean molecular mass between crosslinks, glass tran-
sition temperature (Tg), rubbery plateau modulus and onset
temperature, crosslink density, and fracture energy. Four
erosive impact angles, i.e. 30, 45, 60 and 90◦, were applied,
and four types of erodents were employed. Therefore, the
whole dataset of EP-PUR contains 80 independent groups
of data. The duration was 60 s for all the erosive measure-
ments. Details of the erodents and their erosive conditions,
i.e. mass flow rate and velocity, were summarized inTable 1.

4. Results and discussions

4.1. Predictive quality

In order to analyze the predictive quality, a similar
ANN configuration was used for all three datasets men-
tioned above. The ANN configuration used for PE is of

Fig. 1. Dependence of the percentage of test data on theB value of all
three datasets.

Table 2
Ranking of importance of input variables to erosive wear of polyethylene
(PE) predicted by ANNa

Ranking Input variables[7] Percentage of
B ≥ 0.9 (%)

1 Yield stress (MPa) 72
2 Young’s modulus (MPa) 44
3 Crystallinity (%) 39
4 Yield strain (%) 12
4 Fracture energy (kJ/m2) 12

a Erosive impact angle and one of the input variables in this table were
applied as ANN input to predict the erosive wear rate using a 2-[25]-1
structured neural network, which contains 25 neurons in its hidden layer.
The coefficient of determination was calculated according toEq. (4), and
the percentage ofB ≥ 0.9 was applied for ranking.

Table 3
Ranking of importance of input variables to erosive wear of polyurethane
(PUR) predicted by ANNa

Ranking Input variables[7] Percentage of
B ≥ 0.9 (%)

Percentage of
B ≥ 0.8 (%)

1 Loss factor atTg 23 43
2 Failure strain (%) 15 36
3 Failure stress (MPa) 13 34
4 Hardness (Shore A) 12 31
5 Stressσ at ε = 300% (MPa) 9 22
6 Density (g/cm3) 7 28
7 Stressσ at ε = 100% (MPa) 7 28
8 Thermal expansion coefficient

(×10−1 K−1)
6 28

9 Glass transition temperature
Tg (◦C)

5 19

a Erosive impact angle and one of the input variables in this table were
applied as ANN input to predict the erosive wear rate using a 2-[25]-1
structured neural network, which contains 25 neurons in its hidden layer.
The coefficient of determination was calculated according toEq. (4), and
the percentage ofB ≥ 0.9 (additionally withB ≥ 0.8) was applied for
ranking.

Table 4
Ranking of importance of input variables to erosive wear of epoxy modi-
fied by hygrothermally decomposed polyurethane (EP-PUR) predicted by
ANNa

Ranking Input variables[7,8] Percentage of
B ≥ 0.9 (%)

1 PUR content (wt.%) 84
2 Epoxy content (wt.%) 82
3 Density (g/cm3) 77
4 Mean molecular mass between

crosslinks (g/mol)
72

5 Fracture energy (kJ/m2) 72
6 Rubbery plateau onset temperature (◦C) 72
7 Glass transition temperature (◦C) 60
8 Rubbery plateau modulus (MPa) 28
9 Crosslink density (×1020 cm−3) 22

a Erosive conditions, i.e. impact angle, mass flow rate, and velocity
of erodents, as well as one of the input variables in this table were
applied as ANN input to predict the erosive wear rate using a 4-[25]-1
structured neural network, which contains 25 neurons in its hidden layer.
The coefficient of determination was calculated according toEq. (4), and
the percentage ofB ≥ 0.9 was applied for ranking.
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the form 6-[25]-1, in which all six parameters mentioned
in Section 3.1were applied as ANN input, and the erosive
wear rate as the output. The ANN hidden layer possesses
25 neurons. Bayesian regularization (BR)[9] has been used
as a neural network training algorithm, which is desirable
to determine the optimal regularization parameters in an
automated fashion. For PUR, five characteristic properties
selected from the nine parameters given inSection 3.2con-
stituted its input dataset together with the erosive impact
angle. In the case of EP-PUR, the input dataset was com-
posed by the weight content of epoxy and PUR, as well as
three erosive conditions, i.e. impact angle, mass flow rate
and velocity of erodents.

Fig. 1 gives a bar chart for comparing predictive quali-
ties of all the three datasets, in which about 15% of the data
in each dataset has been used for testing. Thex-coordinate

Fig. 2. Erosive wear rate of an epoxy modified by hygrothermally decomposed polyurethane (EP-PUR) as a function of epoxy weight content and
impact angle of solid particle. Dots are experimental data, whereas the rest of the 3D-plane was calculated by an artificial neural network approach. (a)
Erodent: corundum, size: 60–120�m; (b) erodent: corundum, size: 120–240�m; (c) erodent: steel grit, size: 120–300�m; (d) erodent: glass beads, size:
150–300�m.

of Fig. 1 refers to theB value distribution from the range
less than 0.6 to that between 0.9 and 1.0. They-coordinate
represents the percentage of how manyB values falling in
this range in a 100 times randomly selection of test dataset.
The higher the bar chart in the range of 0.9–1.0 is, the better
is the predictive quality. Acceptable ANN predictive qual-
ities were reached for all these three cases, demonstrating
that ca. 35–80% of the randomly selected test dataset had
a coefficient of determinationB ≥ 0.9, respectively. It is
clear that the dataset of EP-PUR performs the best quality,
which may be due to: (a) the largest number in the dataset,
and (b) polymer compositions as input parameters which
have a stronger correlation to the wear rate. A mixture of
thermosetting and thermoplastic PUR in one dataset could
be a reason that the worst predictive quality for PUR was
observed.
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4.2. Importance of input variables

In order to investigate the correlations between erosive
wear rate and characteristic properties of these polymers,
each characteristic property was used only with the nec-
essary erosive conditions together as input variables for
training the ANN. The qualities were analyzed by the
percentage ofB ≥ 0.9, which were used to rank the impor-
tance of these characteristic properties to erosive wear as
summarized inTables 2–4for various polymer examples.

In the case of PE, the yield stress displays a stronger de-
pendence to erosive wear compared to other four properties
in Table 2. A similar effect was also discussed by Friedrich
[3]. Yield strain and fracture energy show weak influences to
erosive wear of this polymer. For PUR, it was concluded by
Barkoula[7] that a lack of correlation among PUR chemi-
cal, mechanical properties and erosive resistance was found.
This result can be even confirmed by the low ANN pre-
dictive qualities inTable 3. Percentages ofB ≥ 0.8 were
applied additionally for ranking. To combine the thermoset-
ting and thermoplastic PUR data into one dataset may also
reduce the predictive quality. Nevertheless, the high ranking
of the mechanical loss factor suggests that the damping be-
havior may be the key aspect. In the case of EP-PUR, it is
clear inTable 4that material compositions, i.e. epoxy and
PUR weight content, present the strongest correlation with
wear performance, in which a similar effect was also found
by Zhang et al.[5] for the ANN prediction of polymer com-
posites. Density holds the second important position due to
its strong relation to compositions. Mean molecular mass
between crosslinks (Mc) and fracture energy (Gc) exhibit a
similar quality, which may be explained by the linear de-
pendence ofGc to Mc

1/2 [7,8]. The combinative effect of
density andMc may reduce the influence to erosive wear of
rubbery plateau modulus and crosslink density.

Importance analysis by ANN attempts to investigate the
possible correlations between some simple measured pa-
rameters (e.g. modulus, strength and failure strain) to more
complex properties (e.g. wear), which will be of additional
help to materials research for mechanistic understanding.
The simple properties normally are easier to obtain than
the complex ones, and therefore the success of prediction
could be of benefit to reduce the number of more complex
experiments.

4.3. Parameter studies

It is ideal when only material compositions and testing
conditions serve as ANN input data in the case of EP-PUR.
A well-trained ANN is expected to be very helpful to pre-
dict the material properties before manufacturing/testing the
real materials. A look at the current situation inFig. 2shows
that the predictive results exhibit an excellent match to the
real measuring data.Fig. 2a-dexhibit as three-dimensional
(3D)-planes the predictive results of the erosive rate as a
function of epoxy weight content and impact angle of solid

Fig. 3. Contour plot of erosive wear rate of EP-PUR predicted by ANN
as a function of epoxy weight content and impact angle of solid particle.
Erodent: glass beads, size: 150–300�m.

particle for four types of erodents, mass flow rates and ve-
locities mentioned inTable 1, respectively. Compared to the
real test results (dots inFig. 2), the predictive results are
very well acceptable. All these results predicted from one
well-trained ANN, and various erodents were recognized
by their mass flow rate and velocity. It is clear that once a
well-trained ANN has been obtained, new data can be pre-
dicted without performing too many, long lasting experi-
ments. For the first three erodents, presented inFig. 2a-c, the
lowest erosive wear rates are found with the lowest epoxy
content and at erosive angle of 90◦ in each case. High erosive
wear plateaus are found around 80 wt.% of epoxy. For the
erodent of glass beads, the dependence of erosive wear is so
complicated that an additional contour plot ofFig. 2dhas to
be given asFig. 3, predicted by ANN as well. Even though
the ANN approach is only a phenomenological method, a
well-trained ANN is believed to be also of help for a mech-
anistic understanding of the problem considered.

5. Conclusions

Based on this work devoted to predicting the wear per-
formance of the indicted polymeric systems by adopting
the method of artificial neural networks, the following
conclusions can be drawn:

• Ranking of the importance of characteristic properties to
the erosive wear rate could offer some information about
which property has a stronger relationship to wear of
polymers.
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• ANN is a helpful mathematical tool in the property anal-
ysis and prediction of polymers, being directly based on
a limited number of measurement results.
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